HEPATOLOGY, VOL. 74, NO. 6, 2021

Involvement of TIGIT in Natural Killer Cell Exhaustion and Immune Escape in Patients and Mouse Model With Liver *Echinococcus multilocularis* Infection

Chuanshan Zhang,^{1,2*} Hui Wang,^{1,2*} Jing Li,^{2*} Xinling Hou,^{1,2} Linghui Li,¹ Wei Wang,^{1,2} Yang Shi,^{1,2} Dewei Li,² Liang Li,³ Zhibin Zhao,⁴ Liang Li,⁴ Tuerganaili Aji,⁵ Renyong Lin,³ Yingmei Shao,⁵ Dominique A. Vuitton,⁶ Zhigang Tian,^{7,8} Haoyu Sun,^{7,8} and Hao Wen¹

BACKGROUND AND AIMS: Alveolar echinococcosis (AE) is a lethal helminthic liver disease caused by persistent infection with *Echinococcus multilocularis*. Although more attention has been paid to the immunotolerance of T cells caused by *E. multilocularis* infection, the role of natural killer (NK) cell, a critical player in liver immunity, is seldom studied.

APPROACH AND RESULTS: Here, we observed that NK cells from the blood and closed liver tissue (CLT) of AE patients expressed a higher level of inhibitory receptor TIGIT and were functionally exhausted with a lower expression of granzyme B, perforin, interferon-gamma (IFN-γ), and TNFa. Addition of anti-TIGIT (T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain) monoclonal antibody into AE patients' peripheral blood mononuclear cell culture significantly enhanced the synthesis of IFN-γ and TNF-α by NK cells, indicating the reversion of exhausted NK cells by TIGIT blockade. In the mouse model of E. multilocularis infection, liver and splenic TIGIT+ NK cells progressively increased dependent of infection dosage and timing and were less activated and less degranulated with lower cytokine secretion. Furthermore, TIGIT deficiency or blockade in vivo inhibited liver metacestode

growth, reduced liver injury, and increased the level of IFN-γ produced by liver NK cells. Interestingly, NK cells from mice with persistent chronic infection expressed a higher level of TIGIT compared to self-healing mice. To look further into the mechanisms, more regulatory CD56^{bright} and murine CD49a⁺ NK cells with higher TIGIT expression existed in livers of AE patients and mice infected with *E. multilocula-ris*, respectively. They coexpressed higher surface programmed death ligand 1 and secreted more IL-10, two strong inducers to mediate the functional exhaustion of NK cells.

CONCLUSIONS: Our results indicate that inhibitory receptor TIGIT is involved in NK cell exhaustion and immune escape from *E. multilocularis* infection. (Hepatology 2021;74:3376-3393).

lveolar echinococcosis (AE) is a lethal zoonotic helminthic liver disease caused by persistent infection with cestode *Echinococcus multilocularis*. Humans are accidental intermediate hosts; the larval cells mimic a slowly growing liver cancer and progressively invade neighboring tissues

Abbreviations: AE, alweolar echinococcosis; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CLT, close liver tissue; cNK, conventional NK; DLT, distant liver tissue; Em-VF, E. multilocularis vesicular fluid; Fgl2, fibrinogen-like protein 2; HCs, bealthy controls; HD, bigh dose; IFN-\(\gamma\), interferon-gamma; LAG3, lymphocyte-activation gene 3; lrNK, liver-resident NK; mAb, monoclonal antibody; NK, natural killer; NKG2A, natural-killer group 2 member A; NKG2D, natural-killer group 2 member D; NKT, natural killer T; PBMC, peripheral blood mononuclear cell; PD-1, programmed cell death 1; PD-L1, programmed death ligand 1; TIGIT, T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain; TIM-3, T-cell immunoglobulin and mucin domain 3; trNK, tissue-resident NK; WT, wild type.

Received April 13, 2021; accepted June 23, 2021.

Additional Supporting Information may be found at onlinelibrary.wiley.com/doi/10.1002/hep.32035/suppinfo.

*These authors contributed equally.

Supported by Xinjiang Uygur Autonomous Region Open Program of Key Laboratory (no. 2020D04007), the National Natural Science Foundation of China (81760368, 82060370, and 81860359), Open Project of State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia (no. SKL-HIDCA-2019-2), and Xinjiang Uygur Autonomous Region University Scientific Research Project (no. XJEDU2020Y024)

© 2021 by the American Association for the Study of Liver Diseases.

and organs. (2) Chronic inflammation and granuloma located around the parasitic vesicles, along with extensive fibrosis, are the pathological characteristics of AE. (2) Much evidence has demonstrated that the inflamed liver microenvironment plays vital roles in hepatic echinococcosis^(2,3); therefore, how the parasite evades host immunity becomes an interesting question in several aspects of the pathogenesis of E. multilocularis infection. Previous research has reported T-cell tolerance as a key factor in the pathogenesis of E. multilocularis infection $^{(4,5)}$; however, the role of innate immune cells in this process is still open for study.

Both innate and adaptive immunity are pivotal to the parasitic infection. (6) As an active member of innate immunity, natural killer (NK) cells represent ~25%-50% of human liver lymphocytes and 10%-15% of mouse liver lymphocytes. Accumulating findings have demonstrated their special importance in liver immunity and even proposed "liver as an innate immune organ" since this discrimination. (7) NK cells are a heterogeneous population, consisting of two phenotypically and functionally distant subsets.

CD49a and CD49b (DX5) are commonly used to distinguishing these two NK subsets in mouse liver, in which CD49a CD49b NK cells are recognized as conventional NK (cNK) cells and CD49a⁺CD49b⁻ NK cells as liver-resident NK (lrNK) cells⁽⁸⁾; the latter has been recently reported by us as a negative regulator in antiviral immunity to keep liver homeostasis. (9) In the human liver, the proportion of CD56^{bright}CD16⁻ NK cells among NK cells is higher and they display some similarities with mouse lrNK cells with a high production of cytokines (i.e., interferon-gamma [IFN-γ]), whereas CD56^{dim}CD16⁺ NK cells, similar to mouse cNK cells, serve primarily as cytotoxic effectors. (10) A few studies have described the existence of NK cells in AE patients and infected mice⁽¹¹⁻¹⁴⁾; however, a detailed and systemic study on NK cells in relation to E. multilocularis infection remains a goal for research.

Activation and function of NK cells are controlled by a dynamic balance between arrays of inhibitory (recently called checkpoint) and activating receptors, differentially expressed on cell surfaces. (15) The expression pattern of immune checkpoint receptors and the

View this article online at wileyonlinelibrary.com. DOI 10.1002/hep.32035

Potential conflict of interest: Nothing to report.

ARTICLE INFORMATION:

From the ¹State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China; ²Basic Medical College, Xinjiang Medical University, Urumqi, China; 3Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, WHO Collaborating Centre for Prevention and Case Management of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China; ⁴Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China; ⁵Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China; ⁶WHO Collaborating Centre for the Prevention and Treatment of Human Echinococcosis, Department of Parasitology, University Bourgogne Franche-Comté (EA 3181) and University Hospital, Besançon, France; ⁷Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; 8 Institute of Immunology, University of Science and Technology of China, Hefei,

ADDRESS CORRESPONDENCE AND REPRINT REQUESTS TO:

Hao Wen, M.D., Ph.D. The First Affiliated Hospital of Xinjiang Medical University 137 Liyushan Road Urumqi 830054, China E-mail: Dr.wenhao@163.com Tel.: +86 991 436 2844

443 Huangshan Road Hefei 230027, China E-mail: haoyusun@ustc.edu.cn

University of Science and Technology of China

Tel.: +86 551 63600845

Haoyu Sun, Ph.D.

Institute of Immunology

exact regulation of NK cells in the E. multilocularisinfected liver microenvironment provide basic knowledge to understand the process of E. multilocularis immune escape, indicating the importance of such research. Chronic E. multilocularis infection is often associated with functional impairment of NK cells by regulating the expression of their inhibitory and activating receptors. For example, impairment of NK cell activity in the periparasitic area of the liver is partly attributable to the reduced expression of activating receptor natural-killer group 2 member D (NKG2D) and enhanced expression of inhibitory receptor natural-killer group 2 member A (NKG2A). (13,16) In vitro exposure to E. multilocularis vesicular fluid (Em-VF) induces the expression of the immune checkpoint receptors (i.e., programmed death-1 [PD-1]; lymphocyte-activation gene-3 [LAG-3]; and T-cell immunoglobulin and mucin-domain containing-3 [TIM-3]) and down-regulates the functions of NK cells. (12) Altogether, these data suggest that NK cells and their surface checkpoint receptors might play critical roles in the tolerated pathogen-host interaction in human echinococcosis.

T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) is a recently discovered inhibitory receptor expressed mainly on T cells in its early discovery and is involved in the setting of chronic viral infections and tumors. (17) Our previous research has reported that TIGIT is a critical checkpoint to induce functional exhaustion of NK cells as well as T cells, and its blockade significantly reduces tumor growth in preclinical mouse models. (18) Additionally, evidence from our recent finding has indicated that TIGIT works as a checkpoint to mediate T-cell exhaustion in the process of *E. multilocularis* immune escape. (5) However, whether TIGIT regulates the functions of NK cells in E. multilocularis infection remains to be explored.

Here, we observed that NK cells from blood and liver tissues close to the parasitic lesions (close liver tissue; CLT) of AE patients expressed a high level of TIGIT, and these NK cells were functionally exhausted with impaired expression of granzyme B, perforin, IFN- γ , and TNF- α . Anti-TIGIT monoclonal antibody (mAb) successfully reversed the functional exhaustion of NK cells in AE patients'

peripheral blood mononuclear cell (PBMC) culture. Furthermore, in the mouse model of *E. multilocularis* infection, the proportion of liver or splenic TIGIT⁺ NK cells progressively increased depending on infection dosage and time. These TIGIT NK cells were significantly less activated, less degranulated, and showed lower cytokine secretion. Importantly, TIGIT deficiency or blockade with mAb inhibited liver metacestode growth by reversing NK cell exhaustion. In addition, we found more regulatory TIGIT NK cells within human CD56 and murine CD49a⁺ NK cells, with higher IL-10 secretion and highly coexpressed surface programmed death ligand 1 (PD-L1), two strong inducers to mediate the functional exhaustion of immune cells. Our results indicate that NK cell exhaustion induced by TIGIT is involved in the immune escape of E. multilocularis infection.

Materials and Methods

HUMAN DONORS

Liver specimens were obtained from 18 AE patients undergoing liver resection. Patients with immunesuppression-associated conditions, as described in Chauchet et al., were excluded. (4) AE diagnosis was confirmed on liver biopsies in all patients. One specimen was taken close to the parasitic lesion, including the metacestode (CLT, ~0.5 cm from the lesion), and/or one was taken in the macroscopically normal liver distant from the lesion (distant liver tissue [DLT], ≥2 cm distant from the lesion), as described in our previous publication. (5) Blood samples were obtained from 10 AE patients paired with tissue samplesand from 10 healthy age- and sex-matched controls (healthy controls; HCs). The number of liver and blood samples, types of measurements (given in detail in the Supporting Information), and purpose of comparisons are precisely given in Table 1. The study protocol was approved by the ethics committee of the First Affiliated Hospital of Xinjiang Medical University (no.: S20130418-3; Urumqi, China), and all patients provided informed written consent in accordance with the Declaration of Helsinki (1975) of the World Medical Association. All the data of the human subjects are summarized in Supporting Table S1.

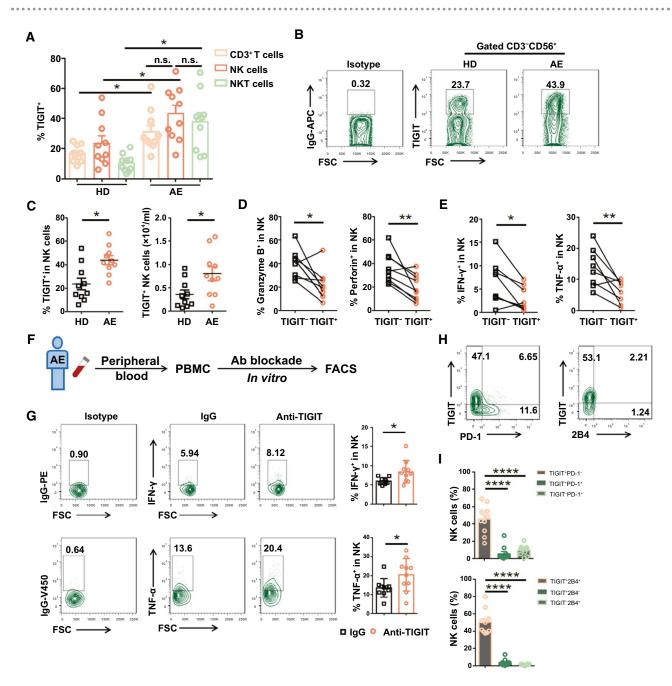
TABLE 1. Liver and Blood Samples From AE Patients and HCs Used for Immunological Studies

Experiment

Liver				AE Patients		
			CLT No. of Samples	DLT No. of Samples	Paired CLT and DLT No. of Sample Pairs	Comparison Between Groups
	FCM	CD3 ⁻ CD56 ⁺ NK cells	18	10	10	CLT vs. DLT
		NK cells, TIGIT	10	10	10	CLT vs. DLT
		NK cells, granzyme B, perforin, IFN- γ , TNF- α	10	10	10	CLT vs. DLT
			CLT No. of Samples	Comparison Between Groups		
		NK cells, CD226	10	TIGIT ⁺ NK cells vs. TIGIT ⁻ NK cells		
		NK cells, TIGIT, PD-1, 2B4	10	TIGIT+PD-1- NK cells vs.TIGIT+PD-1+ NK cells vs.TIGIT-PD-1+ NK cells or TIGIT+2B4- NK cells vs.TIGIT+2B4+ NK cells vs.TIGIT-2B4+ NK cells		
		NK cells, granzyme B, perforin, IFN- γ , TNF- α	10	TIGIT ⁺ NK cells vs. TIGIT ⁻ NK cells		
		NK cells, CD56, CD16	10	CD56 ^{bright} CD16 ⁻ NK cells vs. CD56 ^{dim} CD16 ⁺ NK cells		
		NK cells, TIGIT	10	CD56 ^{bright} CD16 ⁻ NK cells vs. CD56 ^{dim} CD16 ⁺ NK cells		
		NK cells, granzyme B, perforin, IFN- γ , TNF- α , IL-10, PD-L1	10	CD56 ^{bright} CD16 ⁻ NK cells vs. CD56 ^{dim} CD16 ⁺ NK cells		
		CD56 ^{bright} CD16 ⁻ NK cells, granzyme B, perforin, IFN- γ , TNF- α , IL-10, PD-L1	TIGIT+ CD56 ^{bright} CD16 ⁻ NK cells vs.TIGIT- CD56 ⁻ NK cells vs.			D56 ^{bright} CD16 ⁻ NK cells
Blood				AE Patients and HCs		
			AE Patients No. of Samples	HCs No. of Sar	mples Comparison	n Between Groups
	FCM	NK cells, TIGIT	10	10	A	E vs. HC
			AE Patients No. of Samples		Comparison Between G	Groups
	FCM	NK cells, TIGIT, PD-1 , 2B4	10	TIGIT+PD-1- NK cells vs.TIGIT+PD-1+ NK cells vs.TIGIT-PD-1+ NK cells or TIGIT+2B4- NK cells vs.TIGIT+2B4+ NK cells vs.TIGIT-2B4+ NK cells		
		NK cells, granzyme B, perforin, IFN- γ , TNF- α	10	TIGIT ⁺ NK cells vs. TIGIT ⁻ NK cells		
	Blockade	NK cells, IFN-γ, TNF-α	10	lgG vs. anti-TIGIT mAb		

Abbreviation: AE, alveolar echinococcosis; HCs, healthy control; CLT, close liver tissue; DLT, distant liver tissue; FCM, flow cytometry; vs, versus.

Key reagents or resources used in this study are listed in Supporting Table S2. Other materials and methods are included in the Supporting Materials and Methods.


STATISTICAL ANALYSIS

Student's t test was used to compare between two groups, and one-way analysis of variance (ANOVA) was used to compare between three or more groups. All data are presented as the mean \pm standard deviation (SD). Values of P < 0.05 were considered statistically significant.

Results

HIGH EXPRESSION OF TIGIT AND FUNCTIONAL EXHAUSTION OF NK CELLS IN AE PATIENTS

To investigate the expression of TIGIT on different cell subsets in HCs and AE-infected patients, we analyzed the expression of TIGIT on CD3⁺ T cells, NK cells, and natural killer T (NKT) cells in peripheral blood of HC and AE patients, respectively. We found that TIGIT was highly expressed on CD3⁺ T cells, NK cells, and NKT cells of AE patients compared to

FIG. 1. TIGIT expression and dysfunction of blood NK cells in AE patients. (A) Percentage of CD3⁺ T cells, NK cells, or NKT cells expressing TIGIT in PBMCs of HCs and AE patients (n = 10). (B) Representative flow cytometry plot of NK cells expressing TIGIT in PBMCs of HCs and AE patients (AE). (C) Percentage and absolute number of NK cells expressing TIGIT in PBMCs of HCs (n = 10) and AE patients (n = 10). (D) Expression of granzyme B and perforin in TIGIT⁺ or TIGIT⁻ NK cells from PBMCs of AE patients (n = 10). (E) Expression of IFN-γ and TNF-α in TIGIT⁺ or TIGIT⁻ NK cells from PBMCs of AE patients (n = 10). (F) Working model for (G). (G) Representative flow cytometry plot (left) and percentage (right, n = 10) of IFN-γ and TNF-α secretion by NK cells in the presence of control IgG or anti-TIGIT mAb. (H) Representative flow cytometry plot of NK cells coexpressing TIGIT with PD-1 or 2B4 in PBMCs of AE patients. (I) Percentage of NK cells coexpressing TIGIT with PD-1 or 2B4 in PBMCs of AE patients (n = 10). Data were analyzed using paired Student *t* tests or the one-way ANOVA test. All data are presented as mean ± SD. *P < 0.05; **P < 0.01; ****P < 0.001; *****P < 0.0001; n.s., P > 0.05. Abbreviations: Ab, antibody; APC, allophycocyanin; FACS, fluorescence-activated cell sorting; FSC, forward scatter.

......

those of HC (Fig. 1A); furthermore, TIGIT showed the highest expression on NK cells among the three cell subsets, indicating the importance of TIGIT⁺ NK cells in the progression of AE infection. We then reconfirmed TIGIT expression on CD3⁻CD56⁺ NK cells in HCs and AE patients and observed a higher percentage and absolute number of TIGIT+ NK cells in peripheral blood of AE patients (Fig. 1B,C). Furthermore, TIGIT NK cells in peripheral blood of AE patients showed impaired degranulation (as indicated by expression of granzyme B and perforin; Fig. 1D) and cytokine secretion (as indicated by secretion of IFN-γ and TNF-α; Fig. 1E) compared to TIGIT NK cells. To determine whether *in vitro* blocking of TIGIT on NK cells could reactivate their functional responsiveness, PBMCs were isolated from AE patients and restimulated with recombinant human interleukin 2 in the presence of anti-TIGIT mAb (Fig. 1F). Significant elevation of IFN- γ and TNF- α levels were observed in NK cells upon addition of anti-TIGIT mAb, indicating that TIGIT blockade could restore cytokine secretion of exhausted NK cells in AE patients (Fig. 1G). We also assessed the expression of PD-1 and 2B4 on TIGIT NK cells, the two critical molecules in T-cell exhaustion, and the results indicated that TIGIT NK cells were mostly PD-1 negative and 2B4 negative (Fig. 1H,I), indicating that TIGIT plays a more critical role under the scenario of NK cells during AE infection.

Next, we analyzed the expression of TIGIT on different cell subsets in liver tissues close to the parasitic lesion (CLT, ~0.5 cm from the lesion) of AE patients. Consistent with our findings in peripheral blood, TIGIT was highly expressed on NK cells in the CLT of AE patients compared to either CD3⁺ T cells or NKT cells (Fig. 2A). Furthermore, by comparing the CLT and paired liver tissues distant from the parasitic lesion (DLT, ≥ 2 cm distant from the lesion), we found that the percentage and absolute number of NK cells were both higher in CLT compared to those in DLT (Fig. 2B), suggesting that more NK cells were infiltrated into liver lesions. However, NK cells in the CLT showed impaired degranulation (as indicated by the expression of granzyme B and perforin; Fig. 2C) and cytokine secretion (as indicated by the secretion of IFN-γ and TNF-a; Fig. 2D) compared to NK cells in the DLT. We then analyzed the expression of TIGIT on CD3⁻CD56⁺ NK cells in DLT and CLT, and observed a higher percentage and absolute number of TIGIT+ NK cells in CLT of AE patients (Fig. 2E,F). TIGIT expression

was colocalized with CD56⁺ NK cells in CLT using immunofluorescence staining (Fig. 2G). Furthermore, TIGIT⁺ NK cells in the CLT of AE patients showed significantly lower CD226 expression (Fig. 2H), were less degranulated (Fig. 2I), and produced less cytokines (Fig. 2J) compared to TIGIT⁻ NK cells, suggesting that TIGIT⁺ NK cells in the CLT are functionally impaired. We also assessed the expression of PD-1 and 2B4 on TIGIT⁺ NK cells; the results indicated that TIGIT⁺ NK cells were mostly PD-1 negative and 2B4 positive (Fig. 2K,L), suggesting that coexpression of TIGIT with 2B4 exists more commonly. Collectively, these results suggested that TIGIT played an important role in the regulation of NK cells during AE infection.

HIGH TIGIT EXPRESSION CORRELATES TO FUNCTIONAL EXHAUSTION OF NK CELLS IN THE MOUSE MODEL OF E. multilocularis INFECTION

To investigate the role of TIGIT on NK cells during infection, we constructed a mouse model of E. multilocularis infection. We found that the percentage of liver TIGIT NK cells progressively increased, depending on the infection dosage (Fig. 3A), and the highest percentage of liver TIGIT NK cells was found in high-dose (HD)-infected mice after 24 weeks (Fig. 3B); therefore, we decided to infect mice with HD *E*. multilocularis for 24 weeks for the following experiments. We first analyzed the activation of liver NK cells by the expression of CD69 and CD44, and found that liver TIGIT+ NK cells were significantly less activated compared to TIGIT NK cells in mice after 24 weeks of HD infection (Fig. 3C); in addition, they also expressed lower CD226 (Fig. 3C). Furthermore, consistent with our findings in humans, liver TIGIT⁺ NK cells from HD-infected mice showed significantly impaired degranulation (as indicated by the expression of granzyme B and CD107a; Fig. 3D) and cytokine secretion (as indicated by the secretion of IFN-γ and TNF- α ; Fig. 3E). Also, we found that liver TIGIT⁺ NK cells were mostly PD-1 negative, 2B4 negative, and TIM3 negative (Fig. 3F) in this mouse model.

Consistent with our findings in liver NK cells, the percentage of splenic TIGIT⁺ NK cells increased after *E. multilocularis* infection (Supporting Fig. S1A,B), and splenic TIGIT⁺ NK cells were less activated compared to TIGIT⁻ NK cells in mice after 24 weeks of infection

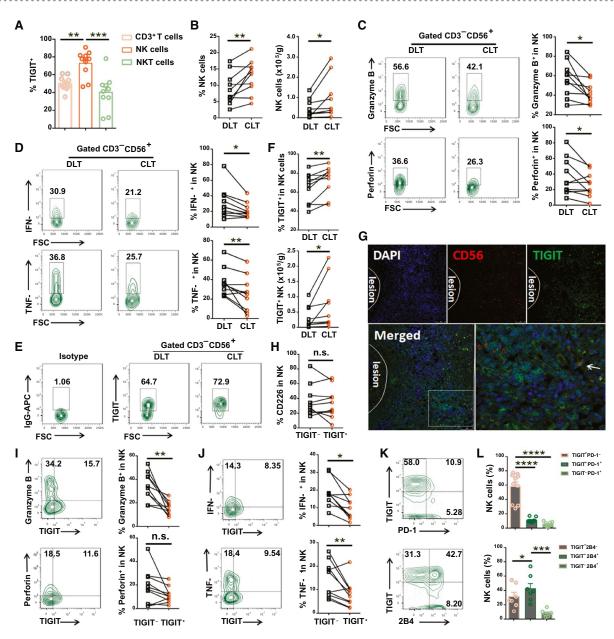


FIG. 2. TIGIT expression and dysfunction of NK cells in liver tissue of AE patients close to (CLT) and distant from (DLT) the parasitic lesions. (A) Percentage of CD3+ T cells, NK cells, or NKT cells expressing TIGIT in CLT of AE patients (n = 10). (B) Percentage and absolute number of infiltrating NK cells isolated from paired DLT and CLT of AE patients (n = 10). (C) Representative flow cytometry plot (left) and percentage (right, n = 10) of granzyme B and perforin production by liver-infiltrating NK cells after phorbol 12-myristrate 13-acetate (PMA)/ionomycin stimulation in paired CLT versus DLT of AE patients. (D) Representative flow cytometry plot (left) and percentage (right, n = 10) of IFN-γ and TNF-α production by liver-infiltrating NK cells after PMA/ionomycin stimulation in paired CLT versus DLT of AE patients. (E) Representative flow cytometry plot of liver NK cells expressing TIGIT in paired CLT versus DLT of AE patients. (F) Percentage and absolute number of liver TIGIT* NK cells in paired CLT versus DLT of AE patients (n = 10). (G) Representative images from IF costaining of DAPI (blue), CD56 (red), TIGIT (green), and merged image on liver section from CLT of AE patients. (H) Percentage of CD266 expression in liver TIGIT+ or TIGIT- NK cells in CLT of AE patients (n = 10). (I) Representative flow cytometry plot (left) and percentage (right, n = 10) of granzyme B and perforin production by liver TIGIT or TIGIT NK cells after PMA/ionomycin stimulation in CLT of AE patients. (J) Representative flow cytometry plot (left) and percentage (right, n = 10) of IFN-γ and TNF-α production by liver TIGIT⁺ or TIGIT⁻ NK cells after PMA/ionomycin stimulation in CLT of AE patients. (K) Representative flow cytometry plot of NK cells coexpressing TIGIT with PD-1 or 2B4 in CLT of AE patients (n = 10). (L) Percentage of NK cells coexpressing TIGIT with PD-1 or 2B4 in CLT of AE patients (n = 10). All data are presented as mean ± SD. Data were analyzed using the Student t test. *P < 0.05; **P < 0.01; n.s., P > 0.05. Abbreviations: APC, allophycocyanin; FSC, forward scatter.

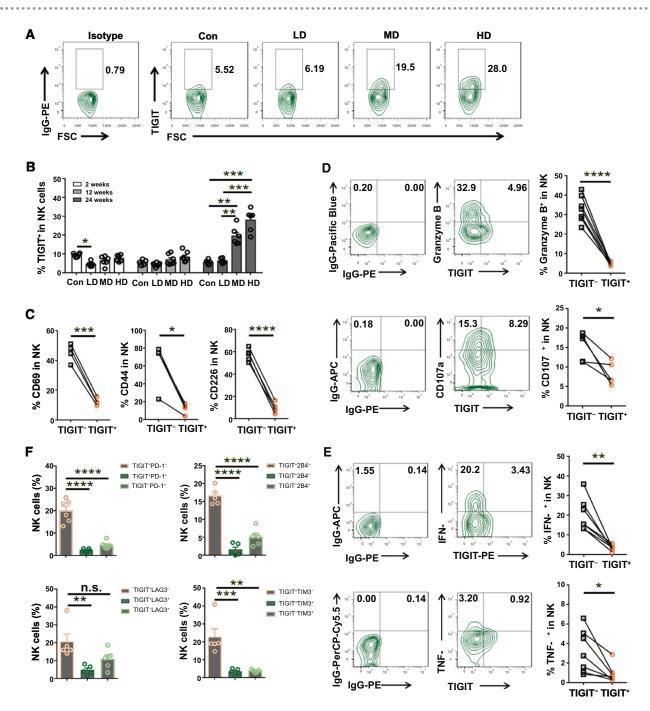
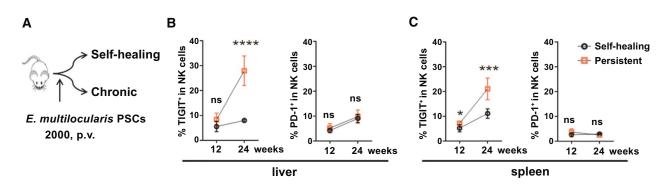



FIG. 3. High TIGIT expression and dysfunction of liver NK cells in mouse model of *E. multilocularis* infection. (A) Representative flow cytometry plot of liver NK cells expressing TIGIT in mice at week 24 after control (Con), low dose (LD), medium dose (MD), or HD infection. (B) Percentage of liver NK cells expressing TIGIT in mice at week 2, 12 or 24 postinfection (5-6 mice per group). (C) Percentage of CD69 $^+$, CD44 $^+$, or CD226 $^+$ among TIGIT $^+$ or TIGIT $^-$ liver NK cells in mice at week 24 after HD infection (4 mice per group). (D) Representative flow cytometry plot and percentage (6 mice per group) of granzyme B and CD107a expression by TIGIT $^+$ or TIGIT $^-$ liver NK cells in mice at week 24 after HD infection. (E) Representative flow cytometry plot and percentage (6 mice per group) of IFN- γ and TNF- α secretion by TIGIT $^+$ or TIGIT $^-$ liver NK cells in mice at week 24 after HD infection. (F) Percentage of liver NK cells coexpressing TIGIT with PD-1, LAG3, 2B4, or TIM3 in mice at week 24 after HD infection (4-6 mice per group). All data are presented as mean \pm SD and are representative of at least two independent experiments. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. Abbreviations: APC, allophycocyanin; Cy5.5, cyanine 5.5; FSC, forward scatter; PE, phycoerythrin; PerCP, peridinin-chlorophyll-protein.

FIG. 4. High TIGIT expression correlates to persistent *E. multilocularis* infection in the long term. (A) C57BL/6 mice were infected with high-dose PSCs. (B) Percentage of liver NK cells expressing TIGIT or PD-1 in self-healing or persistent mice at week 12 or 24 after HD infection (5-6 mice per group). (C) Percentage of splenic NK cells expressing TIGIT or PD-1 in self-healing or persistent mice after 12 or 24 weeks of HD infection (5-6 mice per group). All data are presented as mean \pm SD and are representative of at least two independent experiments. *P < 0.005; ****P < 0.001; *****P < 0.001; ****P < 0.001; *****P < 0

(as indicated by the expression of CD69, CD44, and CD226; Supporting Fig. S1C). Furthermore, splenic TIGIT⁺ NK cells showed significantly impaired degranulation (Supporting Fig. S1D) and cytokine secretion (Supporting Fig. S1E). And, last, splenic TIGIT⁺ NK cells were mostly PD-1 negative, 2B4 negative, LAG3 negative, and TIM3 negative. Taken together, these findings indicated that high TIGIT expression was associated with functional exhaustion of NK cells in both liver and spleen in *E. multilocularis*—infected mice.

Because only a proportion of mice could eliminate the parasite during *E. multilocularis* infection in our model, we were interested to know whether TIGIT plays a role in the persistency of infection (Fig. 4A). Very interestingly, we found that mice with persistent chronic infection expressed a higher level of TIGIT compared to self-healing mice in both liver and spleen after 24 weeks of infection (Fig. 4B,C). In contrast, expression of PD-1 on NK cells showed no differences between the two groups in both liver and spleen (Fig. 4B,C), suggesting that up-regulation of TIGIT might result in the persistency of *E. multilocularis* infection by impairing NK cell functions.

To further prove the role of TIGIT on NK cells during *E. multilocularis* infection, we infected wild-type (WT) or TIGIT^{-/-} mice with HD infection for 24 weeks. We found that TIGIT deficiency inhibited liver metacestode growth (Fig. 5A). Lesion weight and lesion number were significantly decreased in TIGIT-deficient mice compared to those of WT mice (Fig. 5B). TIGIT deficiency also prevented liver injury, given that both serum levels of alanine aminotransferase (ALT)

and aspartate aminotransferase (AST) were decreased in TIGIT-deficient mice (Fig. 5C). Furthermore, a significantly increased level of IFN-γ was produced by liver NK cells from TIGIT-deficient mice compared to WT mice; however, no difference in the production of IFN-γ was observed between splenic NK cells from these two mouse strains (Fig. 5D). In addition, a higher level of IFN-γ was observed in liver CD8⁺ T cells from TIGIT-deficient mice, but not in splenic CD8⁺ T cells or liver and splenic CD4⁺ T cells (Supporting Fig. S2A,B).

Consistent with the results observed in TIGITdeficient mice, blocking TIGIT with anti-TIGIT mAb significantly reduced liver metacestode growth (Fig. 5E). Lesion weight and lesion number were significantly reduced after TIGIT blockade compared to mice treated with IgG (Fig. 5F). Yet, TIGIT blockade showed no effect on the recovery of liver injury (as indicated by the serum ALT and AST levels; Fig. 5G). Furthermore, a significantly increased level of IFN-γ was produced by liver or splenic NK cells in mice treated with anti-TIGIT mAb (Fig. 5H). Last, to further confirm the functional role of IFN-y, we infected IFN-γ-deficient mice with *E. multilocularis*. As expected, IFN-y deficiency promoted liver metacestode growth (Fig. 5I); furthermore, lesion weight and lesion number were significantly increased in IFN-γ-deficient mice compared to WT mice (Fig. 5]), suggesting the importance of IFN- γ during E. multilocularis infection. Collectively, these results indicated that TIGIT deficiency or TIGIT blockade could enhance antiparasitic immunity by reversing the

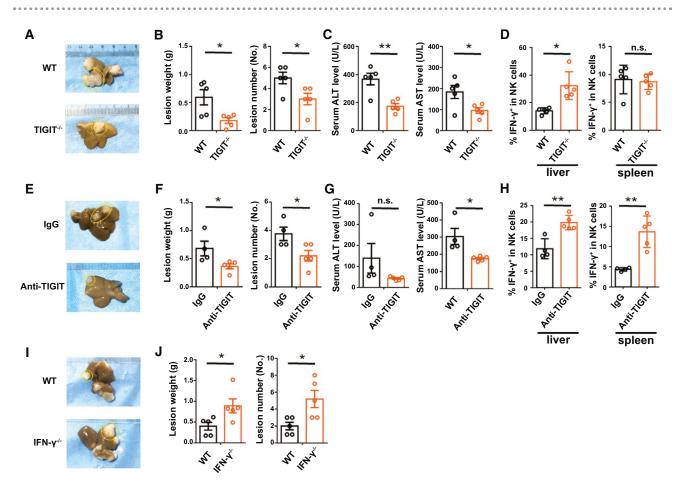


FIG. 5. TIGIT deficiency or blockade delays disease progression by inhibiting NK cell exhaustion in the mouse model of *E. multilocularis* infection. (A) Representative image of metacestode tissue in liver of WT or TIGIT^{-/-} mice at week 24 after HD infection. Metacestode tissues are encircled by the yellow line. (B) Lesion weight (left) and number of infectious foci (right) in liver of WT or TIGIT^{-/-} mice after 24 weeks of persistent infection (5 mice per group). (C) Serum ALT and AST concentrations of WT or TIGIT^{-/-} mice after 24 weeks of persistent infection (5 mice per group). (E) Representative image of metacestode tissue in liver of persistent infected mice treated with IgG or anti-TIGIT mAb for 12 weeks starting at week 12 postinfection (4-5 mice per group). (F) Lesion weight (left) and number of infectious foci (right) in liver of persistent infected mice treated with IgG or anti-TIGIT mAb for 12 weeks starting at week 12 postinfection (4-5 mice per group). (G) Serum ALT and AST concentrations of persistent infected mice treated with IgG or anti-TIGIT mAb for 12 weeks starting at week 12 postinfection (4-5 mice per group). (H) Expression percentage of IFN-γ by liver (left) and splenic (right) NK cells in the infected mice treated with IgG or anti-TIGIT mAb for 12 weeks starting from week 12 postinfection (4-5 mice per group). (I) Representative image of metacestode tissue in liver of WT or IFN-γ^{-/-} mice at week 24 after HD infection. (J) Lesion weight (left) and number of infectious foci (right) in liver of WT or IFN-γ^{-/-} mice at week 12 after HD infection (5 mice per group). All data are presented as mean ± SD and are representative of at least two independent experiments. *P < 0.05; **P < 0.01; ***P < 0.001; n.s., P > 0.05.

exhaustion of NK cells and CD8⁺ T cells, at least partially, by restoring their IFN-γ production.

TIGIT IS HIGHLY EXPRESSED ON REGULATORY NK CELLS IN E. multilocularis INFECTION

Human NK cells divide into two subsets: (1) CD56^{dim}CD16⁺NK cells that are highly cytotoxic against

infected cells or tumor cells and (2) CD56^{bright}CD16⁻ NK cells that produce cytokines. (10)</sup> Early studies have described CD56^{bright}CD16⁻ NK cells as an "immunoregulatory" subset because of their lower capability of killing and higher production of cytokines, including immunosuppressive cytokine IL-10. (19) By analyzing CD56^{dim} and CD56^{bright} NK cell subsets in the CLT of AE patients, we found that more CD56^{bright} NK cells were infiltrated into liver lesions compared to CD56^{dim}

C Α В CD56brightCD16 CD56dimCD16 CD56brightCD16 ¥ .⊆ Granzyme B⁺ 37.4 82.8 % TIGIT⁺ in NK cells CD56brightCD16 Granzyme NK cells 50.2 40 CD56dimCD16+ FSC %Perforin⁺ in NK dim bright **CD16** dim bright 30.1 20.5 TIGIT 20 FSC dim bright F D CD56dimCD16 Ε CD56brightCD16-IFN-γ⁺ in NK Granzyme B⁺ in bright NK Perforin⁺ in bright NK in bright NK in bright NK 60 16.3 Ϋ́ **FSC** TNF-α⁺ in NK 18.2 33.3 TIGIT-TIGIT+ TIGIT- TIGIT+ TIGIT- TIGIT+ TIGIT-TIGIT+ CD56bright CD56bright CD56bright CD56bright dim bright G CLT of AE patients (n=10) in NK % TIGIT*PD-L1* in NK CD56dimCD16+ CD56brightCD16in NK 20 TIGIT*IL-10* % IL-10⁺ 20.3 % dim bright dim bright dim bright dim bright TIGIT- TIGIT TIGIT- TIGIT

FIG. 6. Increased regulatory CD56 bright CD16 NK cells in liver tissue of AE patients close to (CLT) the parasitic lesions. (A) Representative flow cytometry plot of TIGIT expression in CD56^{dim}CD16⁺ and CD56^{bright}CD16⁻ NK cells in CLT of AE patients. (B) Percentage of CD56^{dim}CD16⁺ and CD56^{bright}CD16⁻ NK cells or TIGIT expression in CD56^{dim}CD16⁺ and CD56^{bright}CD16⁻ NK cells in CLT of AE patients (n = 10). (C) Representative flow cytometry plot (left) and percentage (right) of granzyme B and perforin production by CD56^{dim}CD16⁺ NK cells or CD56^{bright}CD16⁻ NK cells in CLT of AE patients. (D) Representative flow cytometry plot (left) and percentage (right) of IFN-γ and TNF-α production by CD56^{dim}CD16⁺ NK cells or CD56^{bright}CD16⁻ NK cells in CLT of AE patients. (E) Percentage of granzyme B and perforin production by TIGIT or TIGIT* CD56bright CD16 NK cells in CLT of AE patients (n = 10). (F) Percentage of IFN- γ and TNF- α production by TIGIT- or TIGIT+ CD56 bright CD16- NK cells in CLT of AE patients (n = 10). (G) Representative flow cytometry plot (left) and percentage (right) of IL-10 production by CD56^{dim}CD16⁺ NK cells or CD56^{bright}CD16⁻ NK cells in CLT of AE patients (n = 10). (H) Percentage of TIGIT*IL-10* CD56^{dim}CD16* NK cells or TIGIT*IL-10* CD56^{bright}CD16⁻ NK cells in CLT of AE patients (n = 10). (I) Percentage of IL-10 production by TIGIT⁻ or TIGIT⁺ CD56^{bright}CD16⁻ NK cells in CLT of AE patients (n = 10). (j) Percentage of PD-L1 expression in CD56^{dim}CD16⁺ NK cells or CD56^{bright}CD16⁻ NK cells in CLT of AE patients (n = 10). (K) Percentage of TIGIT+PD-L1+ CD56^{dim}CD16+ NK cells or TIGIT+PD-L1+ CD56^{bright}CD16- NK cells in CLT of AE patients (n = 10). (L) Percentage of PD-L1 expression by TIGIT or TIGIT CD56brightCD16 NK cells in CLT of AE patients (n = 10). All data are presented as mean ± SD. Data were analyzed using the Student t test. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; n.s., P > 0.05. Abbreviation: FSC, forward scatter.

CD56bright

NK cells (Fig. 6A,B and Supporting Fig. S3). Based on our above results, we then analyzed the expression of TIGIT on these two NK cell subsets and discovered that CD56^{bright} NK cells expressed more TIGIT than CD56^{dim} NK cells (Fig. 6A,B). Furthermore, CD56^{bright} NK cells in the CLT of AE patients exhibited impaired degranulation (as indicated by expression of granzyme B and perforin; Fig. 6C) and secreted a lesser amount of IFN- γ and TNF- α (Fig. 6D). CD56^{bright} NK cells with surface expression of TIGIT produced less granzyme B, perforin, IFN-γ, and TNF-α (Fig. 6E,F) compared to those without TIGIT expression. IL-10 secretion and/ or PD-L1 expression are two typical signatures of regulatory NK cells; we then analyzed IL-10 production of the two NK cell subsets. Not surprisingly, we found that CD56^{bright} NK cells in the CLT of AE patients secreted more IL-10 (Fig. 6G); furthermore, those CD56 bright NK cells with TIGIT coexpression produced an even higher amount of IL-10 than those without TIGIT expression (Fig. 6H,I). No significant difference in PD-L1 expression was observed between the two NK cell subsets (Fig. 6]); furthermore, TIGIT showed no influence over PD-L1 expression on these two NK cell subsets (Fig. 6K,L). Collectively, these data indicated that CD56 bright NK cells exhibited a more immunoregulatory function than CD56^{dim} NK cells during infection, and TIGIT+ CD56^{bright} NK cells were probably even more "regulatory" than TIGIT CD56 bright NK cells.

Previous studies have indicated that murine hepatic NK cells divide into CD49a⁺CD49b⁻ and CD49a⁻CD49b⁺ NK cell subsets, among which CD49a⁺CD49b⁻ NK cells are tissue-resident NK (trNK) cells that do not circulate in the blood whereas CD49a⁻CD49b⁺ NK cells are cNK cells that circulate in the blood. (8) cNK cells are cytotoxic against infected cells or tumor cells whereas the main function of trNK cells is to produce cytokines, including IL-10, and express ligands of inhibitory receptors (so-called checkpoints) in order to negatively regulate immune response (which is similar to the CD56 bright NK cell subset in humans). Recently, the regulatory roles of trNK cells in the liver tumor microenvironment (20) and in homeostasis by controlling liver injury of hepatic virus infection (21) have been reported. By analyzing CD49a⁻ cNK and CD49a⁺ trNK cell subsets in liver of E. multilocularis-infected mouse models, we found that the percentage and absolute number of lrNK cells were significantly increased when compared to cNK cells in the infected liver (Fig. 7A,B and Supporting Fig. S4). Interestingly, the expression of surface TIGIT was markedly increased both on cNK and lrNK cells after infection; however, the absolute number of TIGIT+ lrNK cells was much higher than that of TIGIT + cNK cells in the liver (Fig. 7C). By analyzing cytokine secretion, we found that IFN-γ production by lrNK, but not cNK, cells was significantly reduced after infection, whereas TNF- α production was not changed upon infection in lrNK cells (Fig. 7D). Given that IL-10 secretion and PD-L1 expression are the two typical signatures of regulatory NK cells, we evaluated IL-10 secretion and PD-L1 expression of liver NK cell subsets. IL-10 production by lrNK cells was increased by 3-fold after infection whereas no significant change was observed in IL-10 production by cNK cells (Fig. 7E). Furthermore, lrNK cells from both healthy and infected livers expressed significantly higher PD-L1 (with greater increase after infection) than cNK cells, whereas cNK cells also increased their PD-L1 expression after infection (Fig. 7F), suggesting a regulatory characteristic of lrNK cells in the infected model. Furthermore, the role of TIGIT in liver NK cell function was carried out. TIGIT+ lrNK cells produced less IFN-y and more IL-10 and expressed more PD-L1 compared to TIGIT 1rNK cells (Fig. 7G), suggesting a critical role of TIGIT on regulatory lrNK cells during infection.

We also analyzed the phenotype and function of these two NK cell subsets in the spleen. The content of trNK was relatively low compared to cNK cells. However, after infection, the absolute number of splenic trNK, but not cNK, cells was significantly increased (Fig. 8A,B and Supporting Fig. S4). Same as observed in the liver, the expression of surface TIGIT was markedly increased both on cNK and trNK cells after infection; however, the percentage and absolute number of TIGIT trNK cells were not significantly different from those of TGIT⁺ cNK cells in the spleen (Fig. 8C). Regarding cytokine secretion, we found that IFN-γ production by neither trNK nor cNK cells was changed after infection, whereas TNF-α production by trNK cells was dramatically increased (Fig. 8D). IL-10 production by both trNK and cNK cells was significantly enhanced after infection, among which trNK cells produced higher IL-10 than cNK cells (Fig. 8E). Although only splenic cNK cells increased PD-L1 expression upon infection, splenic trNK cells maintained a significantly higher PD-L1 expression

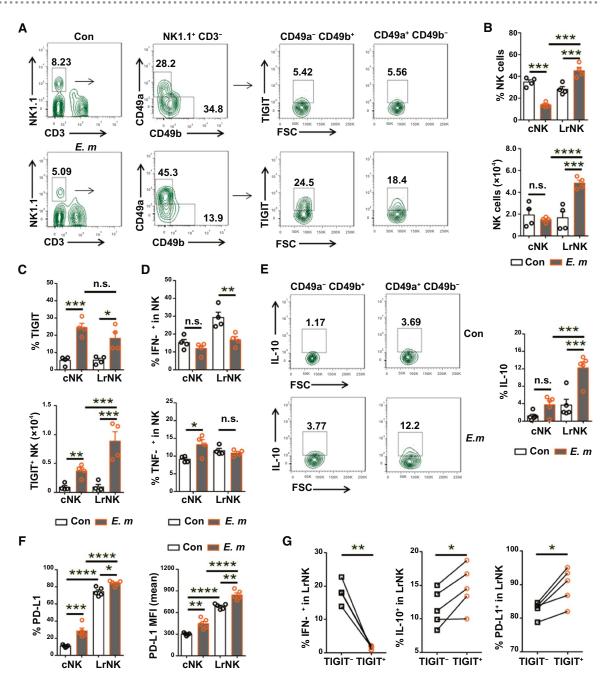


FIG.7. Increased regulatory CD49a⁺CD49b⁻ NK cells in liver of *E. multilocularis*—infected mice. (A) Representative flow cytometry plot of TIGIT expression in liver CD49a⁻CD49b⁺ NK cells and CD49a⁺CD49b⁻ NK cells at week 24 after *E. multilocularis* infection. (B) Percentage and absolute number of liver CD49a⁻CD49b⁺ NK cells and CD49a⁺CD49b⁻ NK cells from mice at week 24 postinfection (4 mice per group). (C) Percentage and absolute number of TIGIT expression in liver CD49a⁻CD49b⁺ NK cells or CD49a⁺CD49b⁻ NK cells from mice at week 24 postinfection. (D) Percentage of IFN-γ and TNF-α secretion by liver CD49a⁻CD49b⁺ NK cells or CD49a⁺CD49b⁻ NK cells after PMA/ionomycin stimulation from mice at week 24 postinfection (4 mice per group). (E) Representative flow cytometry plot (left) and percentage (right) of IL-10 secretion by liver CD49a⁻CD49b⁺ NK cells or CD49a⁺CD49b⁻ NK cells after PMA/ionomycin stimulation from mice at week 24 postinfection (5 mice per group). (F) Percentage and MFI of PD-L1 expression in liver CD49a⁻CD49b⁺ NK cells or CD49a⁺CD49b⁻ NK cells from mice at week 24 postinfection (5 mice per group). (G) Percentage of IFN-γ, IL-10, and PD-L1 expression by liver TIGIT⁻ or TIGIT⁺ CD49a⁺CD49b⁻ NK cells after PMA/ionomycin stimulation from mice at week 24 postinfection (4 mice per group). All data are presented as mean ± SD and are representative of at least two independent experiments. *P < 0.05; **P < 0.01; ****P < 0.001; ****P < 0.001; *****P < 0.001; ****P < 0.001; ****P

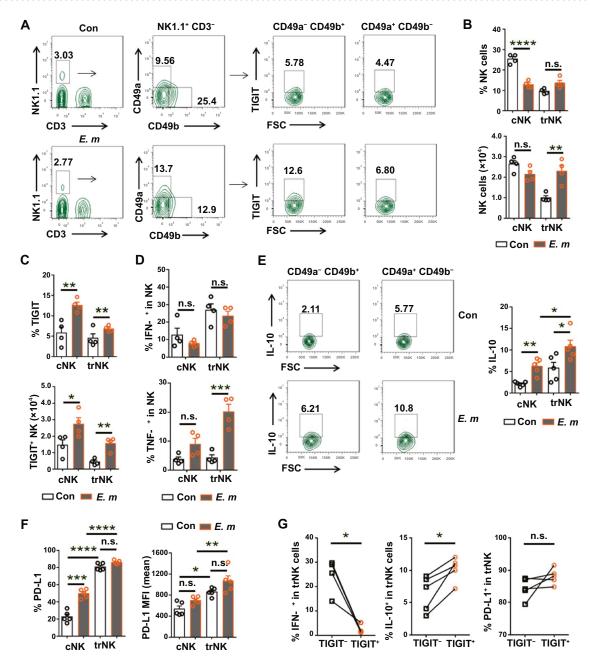


FIG. 8. Increased regulatory CD49a⁺CD49b⁻ NK cells in spleen of *E. multilocularis*—infected mice. (A) Representative flow cytometry plot of TIGIT expression in splenic CD49a⁻CD49b⁺ NK cells and CD49a⁺CD49b⁻ NK cells at week 24 postinfection. (B) Percentage and absolute number of splenic CD49a⁻CD49b⁺ NK cells and CD49a⁺CD49b⁻ NK cells from mice at week 24 postinfection (4 mice per group). (C) Percentage and absolute number of TIGIT expression in splenic CD49a⁻CD49b⁺ NK cells or CD49a⁺CD49b⁻ NK cells from mice at week 24 postinfection. (D) Percentage of IFN-γ and TNF-α secretion by splenic CD49a⁻CD49b⁺ NK cells or CD49a⁺CD49b⁻ NK cells after PMA/ionomycin stimulation from mice at week 24 postinfection (4 mice per group). (E) Representative flow cytometry plot (left) and percentage (right) of IL-10 secretion by splenic CD49a⁻CD49b⁺ NK cells or CD49a⁺CD49b⁻ NK cells after PMA/ionomycin stimulation from mice at week 24 postinfection (5 mice per group). (F) Percentage and MFI of PD-L1 expression in splenic CD49a⁻CD49b⁺ NK cells or CD49a⁺CD49b⁻ NK cells from mice at week 24 postinfection (5 mice per group). (G) Percentage of IFN-γ, IL-10, and PD-L1 expression by splenic TIGIT⁻ or TIGIT⁺ CD49a⁺CD49b⁻ NK cells after PMA/ionomycin stimulation from mice at week 24 postinfection (4 mice per group). All data are presented as mean ± SD and are representative of at least two independent experiments. *P < 0.05; ***P < 0.01; ****P < 0.001; *****P < 0.0001; n.s., P > 0.05. Abbreviations: Con, control group; *E. m*, persistent infected group; FSC, forward scatter.

than cNK cells with or without infection (Fig. 8F), suggesting a possible regulatory role of splenic trNK cells. Same as observed in the liver, splenic TIGIT⁺ trNK cells produced less IFN-γ and more IL-10 compared to TIGIT⁻ trNK cells (Fig. 8G), suggesting a role of TIGIT on regulatory splenic trNK cells during infection.

Discussion

The NK cell population is one of the main actors of the immune system against intracellular viruses, tumors, and parasitic infection. (9,10,13,22) Functional deficiency of NK cells is associated with pathogen progression and contributes to disease pathogenesis. (22) A number of studies have indicated the importance of NK cells in the parasite/host interactions at different stages of echinococcosis (early and advanced). (13,14) Impaired functions of NK cells may be the key factor in the immune evasion strategy displayed by *E. multilocularis*; for example, NK cells from the peripheral blood of AE patients show lower cytotoxicity. (14) Our study showed that although more NK cells were infiltrated into the CLT of AE patients, they were functionally impaired compared to those in the DLT of AE patients.

Functions of NK cells are strictly regulated by a repertoire of activating and inhibitory receptors. (15) Available data have shown that *E. multilocularis* and its antigen inhibit the function of NK cells by up-regulating the expression of inhibitory receptors, including NKG2A, PD-1, and LAG-3. (12) We found that NK cells from the blood and CLT of AE patients expressed a higher level of inhibitory receptor TIGIT, which was reported to inhibit the activation of NK cells in tumors or chronic infection. (18,23) Our study showed that TIGIT NK cells in the peripheral blood or CLT of AE patients were functionally exhausted with lower expression of granzyme B, perforin, IFN-γ, and TNF- α . It has been reported that exposure to *Em*-VF significantly decreases the expression of CD69 on NK cells, (11) in our study, by using the mouse model of E. multilocularis infection, we showed that liver and splenic TIGIT⁺ NK cells from infected mice were less activated, as indicated by lower expression of CD69 and CD44. Furthermore, these TIGIT NK cells were less degranulated (as indicated by perforin and granzyme B) with lower cytokine secretion (as indicated by IFN- γ and TNF- α). Together, these data suggest that NK cells accumulate and become functionally exhausted in *E. multilocularis*—infected liver, likely driven by persistent metacestode growth, during which TIGIT acts as a negative regulator of NK cells.

One issue raised in this study is how *E. multilocularis* infection induces TIGIT up-regulation on NK cells, thereby affecting the outcome of infection. Multiple lines of evidence have shown that high levels of cytokines or pathogen-derived proteins (antigen) directly or indirectly promote the up-regulation of inhibitory receptors, leading to the exhaustion of immune cells. For example, fibrinogen-like protein 2 (Fgl2) or IL-27 induce the expression of a panel of checkpoint molecules, including TIGIT, PD-1, PD-L1, and LAG-3, resulting in the dysfunction of T cells. (24,25) Studies have also reported that fatty-acid-binding protein 2 protein from Fusobacterium nucleatum binds directly to TIGIT to inhibit NK-cell- and T-cell-mediated tumor reactivity, (26) and that HTLV-1 bZIP factor induces the expression of TIGIT, which likely results in the impaired responses of T cells against viral antigens by enhancing IL-10 production. (27) Previous works have shown that Fgl2 and IL-27 both significantly upregulate in liver or blood of E. multilocularis-infected mice or AE patients with progressive disease. (28,29) Furthermore, *Em*-VF induces the expression of inhibitory receptors (including PD-1, LAG-3, and TIM-3) on the surface of NK cells and inhibits NK cell activation and proliferation ex vivo. (12) Hence, these results suggest that Fgl2, IL-27, or E. multilocularis-derived antigens might contribute to up-regulated expression of TIGIT in NK cells during echinococcosis.

We further confirmed the reversion of NK cell exhaustion by TIGIT blockade. Addition of anti-TIGIT mAb into AE patients' PBMC culture significantly enhanced the secretion of IFN- γ and TNF- α by NK cells. Furthermore, TIGIT deficiency or blockade *in vivo* inhibited mouse liver metacestode growth, reduced liver injury, and increased the level of IFN-y produced by liver NK cells and T cells. Our findings also showed that the proportion of TIGIT on NK cells derived from AE patients was higher than that on other lymphocytes (T cells or NKT cells; Fig. 2A), suggesting that TIGIT might be particularly important for NK cell function. One study showed that blockade of TIGIT improves adaptive immunity in a NK-cell-dependent manner in tumor models, indicating that NK cells not only exert a direct antitumor effect, but also assist the function of CTLs. (18) TIGIT

contributes to immunotolerance by inhibiting not only the immune responses mediated by T cells, but also those mediated by NK cells. (30) A recent study has reported the conversion of "exhausted NK cells" to type 1 innate lymphoid cells (ILC1s) in AE mice with PD-L1 blockade, which is involved in the inhibition of metacestode growth. (31) Overall, although we cannot exclude the role of T cells during this process, we believe that NK cells play an important role in disease progression as well, and loss or blockade of TIGIT influences disease progression through NK cells. Moreover, therapeutic strategies aiming at blocking TIGIT in tumors are being tested in various clinical trials in association with anti-LAG-3, anti-PD-1, and anti-PD-L1 (clinical trials: NCT04150965, NCT04570839, and NCT03119428) or alone (clinical trials: NCT04354246, NCT03628677). Our study suggests an opportunity of TIGIT blockade in restoring NK cell and T-cell function in AE patients.

Several studies have suggested that some NK cells play regulatory functions during infection and cancer, mainly through the production of immuneregulatory cytokines, such as IL-10, IL-13, and TGF- β , β , β , β , or the expression of immune checkpoint molecules, such as PD-L1 and CD73. (21,34) Human NK cells divide into CD56^{bright}CD16⁻ NK cells and CD56^{dim}CD16⁺ NK cells; early studies have described CD56^{bright}CD16⁻ NK cells as an immunoregulatory subset because of their lower cytotoxicity and higher secretion of cytokines, including immunosuppressive cytokine IL-10. (19,32) Interestingly, our study showed that these regulatory CD56^{bright} NK cells were enriched in the CLT of AE patients with lower cytotoxicity (as indicated by perforin and granzyme B), lower secretion of effector cytokines (as indicated by IFN- γ and TNF- α), and higher secretion of immunosuppressive cytokine IL-10. Furthermore, TIGIT was highly expressed by CD56^{bright} NK cells compared to CD56^{dim} NK cells, and these TIGIT⁺CD56^{bright} NK cells showed lower cytotoxicity, lower effector cytokine secretion, and higher IL-10 production compared to TIGIT-CD56 bright NK cells, suggesting that the expression of TIGIT further promoted the immunoregulatory characteristic of CD56 bright NK cells.

Murine liver NK cells divide into CD49a⁺CD49b⁻ and CD49a⁻CD49b⁺ NK cells⁽⁸⁾; the former are lrNK cells (recently also called ILC1s) that produce immunosuppressive cytokines, such as IL-10, and express checkpoint ligand PD-L1 (which is similar to

CD56^{bright} NK cells in humans). (21,35) We and others have found that lrNK and cNK cells are developmentally, phenotypically, and functionally distinct subsets. (10) Previous studies have reported that trNK cells expressing TIGIT, PD-1, and TIM-3 are more exhausted in tumors, whereas cNK cells can still harbor the classical phenotype, therefore being activated, and mount an efficient immune response. (20,21,36) The regulatory function of trNK cells has also been reported in the immune surveillance against pathogens. (37) Consistent with such works, our study showed that lrNK cells were enriched in E. multilocularis-infected mice and produced more IL-10 compared to cNK cells; in addition, TIGIT was highly expressed on lrNK cells, suggesting that lrNK cells play a more important role in this infection model. TIGIT 1rNK cells expressed higher PD-L1 and produced more IL-10, two typical characteristics of regulatory function, compared to TIGIT In VIVO significantly down-regulated the level of IL-10 in liver tissue surrounding the lesion using immunohistochemical staining (data not shown). In accordance with our study, previous works have also indicated that IL-10producing NK cells can limit T-cell responses during parasitic infection⁽³⁸⁾ or viral infection.⁽³⁹⁾ Furthermore, NK cells can limit DC maturation or T-cell responses through a PD-L1-dependent mechanism during antitumor or -viral immune responses. (21,40) Therefore, we suggest that regulatory NK cells are enriched in the CLT of AE patients or liver of E. multilocularis infected mice, and sustained up-regulation of TIGIT on regulatory NK cells may maintain NK cell exhaustion in both liver and periphery, which alternatively results in impaired antiparasitic responses and E. multilocularis persistence. Production of IL-10 or expression of PD-L1 by TIGIT+ NK cells contributes to the compromised immunity that is associated with E. multilocularis-mediated chronic inflammation.

Meanwhile, the phenotypical and functional analysis in our study showed that NK cell responses in *E. multilocularis*—infected mice were different in the liver and spleen. In both organs, the absolute number of trNK cells was significantly increased after infection; however, TIGIT⁺ lrNK cells was the dominant subset in the liver, whereas TIGIT⁺ cNK cells was the dominant subset in the spleen. Furthermore, lrNK cells produced less IFN-γ and expressed more PD-L1 after *E. multilocularis* infection, whereas splenic trNK cells showed no change in expression of IFN-γ or PD-L1.

However, both liver and splenic trNK cells produced more IL-10 upon *E. multilocularis* infection. Organspecific NK cell response has been reported during infections with lymphocytic choriomeningitis virus, murine cytomegalovirus, and *Plasmodium yoelii*. (41,42) The differences in NK cell response observed in these two organs could be a result of organ microenvironment and local immune characteristics, suggesting that organ-specific strategies are important in treating these organ-specific diseases.

A previous study has reported that TIGIT deficiency or inhibition promotes antitumor and/or antiviral function of NK cells, which is characterized by increased production of effector cytokine IFN- γ . (17,18) We also showed that TIGIT deficiency in vivo increased the level of IFN-y produced by liver NK cells and CD8⁺ T cells, which may be responsible for the inhibition of metacestode growth in E. multilocularis-infected mice. Furthermore, NK cells also produced more IFN-y after TIGIT blockade, providing a major source of IFN-y that confers host protection during chronic infection. (5) However, in contrast to IFN- γ , the level of TNF- α produced by NK cells was unchanged in TIGIT-deficient mice or mice treated with anti-TIGIT mAb during E. multilocularis infection. In line with our results, reduced production of IFN-γ has been observed in AE patients whereas TNF-α expression has not been detected in AE patients with abortive lesions. (43) These data suggest that IFN- γ , but not TNF- α , may act synergistically with other factors to slow parasite growth or achieve curative effects. In fact, available data have indicated that IFN-y depends on the synergism of antiparasitic drugs or other factors to induce curative effects on AE patients. (44) Its role in the inhibition of larval growth is consistent with the findings on IFN-y-deficient mice infected with *E. multilocularis* in our study.

Altogether, our study demonstrated that TIGIT was an important potential checkpoint to mediate NK cell exhaustion in AE patients and *E. multilocularis*—infected mice. Deficiency or blockade of TIGIT inhibited liver metacestode growth partly through reversing the functional impairment of NK cells. Furthermore, the increased prevalence of TIGIT⁺ NK cells and their IL-10 and/or PD-L1 expression were important factors governing the persistent parasitic infection during echinococcosis. The findings suggest that targeting TIGIT may be a potential immune therapeutic strategy to treat patients with AE.

Acknowledgment: We thank Xue Zhang, Ning Yang, and Qin Wei for technical assistance. We thank the patients and controls who voluntarily participated in the study.

Author Contributions: Conceived and design: C.S.Z., H.W., J.L., H.Y.S., and Z.G.T.; performed the experiments: C.S.Z., H.W., J.L., X.L.H., L.H.L., W.W., D.W.L., and Y.S.; analyzed the data: C.S.Z., L.L., and Z.B.Z.; contributed to technical- or materials-related issues: L.L., H.W., T.A., and Y.M.S.; drafted and revised the manuscript: C.S.Z., D.A.V., H.Y.S., H.W., and Z.G.T.; supervised the study: Z.G.T. and H.W. All authors reviewed and approved the manuscript.

REFERENCES

- Wen H, Vuitton L, Tuxun T, Li J, Vuitton DA, Zhang W, et al. Echinococcosis: advances in the 21st century. Clin Microbiol Rev 2019;32:e00075-18.
- Gottstein B, Soboslay P, Ortona E, Wang J, Siracusano A, Vuitton D. Immunology of alveolar and cystic echinococcosis (AE and CE). Adv Parasitol 2017;96:1-54.
- Zhang C, Shao Y, Yang S, Bi X, Li L, Wang H, et al. T-cell tolerance and exhaustion in the clearance of *Echinococcus multilocularis*: role of inoculum size in a quantitative hepatic experimental model. Sci Rep 2017;7:11153.
- Chauchet A, Grenouillet F, Knapp J, Richou C, Delabrousse E, Dentan C, et al. Increased incidence and characteristics of alveolar echinococcosis in patients with immunosuppression-associated conditions. Clin Infect Dis 2014;59:1095-1104.
- 5) Zhang C, Lin R, Li Z, Yang S, Bi X, Wang H, et al. Immune exhaustion of T cells in alveolar echinococcosis patients and its reversal by blocking checkpoint receptor TIGIT in a murine model. Hepatology 2020;71:1297-1315.
- 6) Weatherhead JE, Gazzinelli-Guimaraes P, Knight JM, Fujiwara R, Hotez PJ, Bottazzi ME, et al. Host immunity and inflammation to pulmonary helminth infections. Front Immunol 2020;11:594520.
- 7) Kubes P, Jenne C. Immune responses in the liver. Annu Rev Immunol 2018;36:247-277.
- 8) Peng H, Jiang X, Chen Y, Sojka DK, Wei H, Gao X, et al. Liverresident NK cells confer adaptive immunity in skin-contact inflammation. J Clin Invest 2013;123:1444-1456.
- Li H, Zhai N, Wang Z, Song H, Yang Y, Cui AN, et al. Regulatory NK cells mediated between immunosuppressive monocytes and dysfunctional T cells in chronic HBV infection. Gut 2018;67:2035-2044.
- Zhou J, Tian Z, Peng H. Tissue-resident NK cells and other innate lymphoid cells. Adv Immunol 2020;145:37-53.
- Bellanger AP, Mougey V, Pallandre JR, Gbaguidi-Haore H, Godet Y, Millon L. *Echinococcus multilocularis* vesicular fluid inhibits activation and proliferation of natural killer cells. Folia Parasitol (Praha) 2017;64:2017.029.
- Bellanger AP, Courquet S, Pallandre JR, Godet Y, Millon L. *Echinococcus multilocularis* vesicular fluid induces the expression of immune checkpoint proteins in vitro. Parasite Immunol 2020;42:e12711.
- 13) Abulizi A, Shao Y, Aji T, Li Z, Zhang C, Aini A, et al. Echinococcus multilocularis inoculation induces NK cell functional decrease through high expression of NKG2A in C57BL/6 mice. BMC Infect Dis 2019;19:792.

- 14) Vuitton DA, Bresson-Hadni S, Laroche L, Kaiserlian D, Guerret-Stocker S, Bresson JL, et al. Cellular immune response in *Echinococcus multilocularis* infection in humans. II. Natural killer cell activity and cell subpopulations in the blood and in the periparasitic granuloma of patients with alveolar echinococcosis. Clin Exp Immunol 1989;78:67-74.
- Long EO, Kim HS, Liu D, Peterson ME, Rajagopalan S. Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol 2013;31:227-258.
- 16) Zhang S, Hue S, Sene D, Penfornis A, Bresson-Hadni S, Kantelip B, et al. Expression of major histocompatibility complex class I chain-related molecule A, NKG2D, and transforming growth factor-beta in the liver of humans with alveolar echinococcosis: new actors in the tolerance to parasites? J Infect Dis 2008;197:1341-1349.
- 17) Johnston R, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y, et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell 2014;26:923-937.
- 18) Zhang Q, Bi J, Zheng X, Chen Y, Wang H, Wu W, et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat Immunol 2018;19:723-732.
- Laroni A, Uccelli A. CD56bright natural killer cells: a possible biomarker of different treatments in multiple sclerosis. J Clin Med 2020;9:1450.
- 20) Sun H, Liu L, Huang Q, Liu H, Huang M, Wang J, et al. Accumulation of tumor-infiltrating CD49a(+) NK cells correlates with poor prognosis for human hepatocellular carcinoma. Cancer Immunol Res 2019;7:1535-1546.
- 21) Zhou J, Peng H, Li K, Qu K, Wang B, Wu Y, et al. Liver-resident NK cells control antiviral activity of hepatic T cells via the PD-1-PD-L1 axis. Immunity 2019;50:403-417.e4.
- 22) Peng H, Wisse E, Tian Z. Liver natural killer cells: subsets and roles in liver immunity. Cell Mol Immunol 2016;13:328-336.
- 23) Stanietsky N, Rovis TL, Glasner A, Seidel E, Tsukerman P, Yamin R, et al. Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR. Eur J Immunol 2013;43:2138-2150.
- 24) Sungnak W, Wagner A, Kowalczyk MS, Bod L, Kye YC, Sage PT, et al. T Follicular regulatory cell-derived fibrinogen-like protein 2 regulates production of autoantibodies and induction of systemic autoimmunity. J Immunol 2020;205:3247-3262.
- 25) DeLong JH, O'Hara Hall A, Rausch M, Moodley D, Perry J, Park J, et al. IL-27 and TCR stimulation promote T cell expression of multiple inhibitory receptors. Immunohorizons 2019;3:13-25.
- 26) Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, et al. Binding of the Fap2 protein of *Fusobacterium nucleatum* to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 2015;42:344-355.
- 27) Yasuma K, Yasunaga JI, Takemoto K, Sugata K, Mitobe Y, Takenouchi N, et al. HTLV-1 bZIP factor impairs anti-viral immunity by inducing co-inhibitory molecule, T cell immunoglobulin and ITIM domain (TIGIT). PLoS Pathog 2016;12:e1005372.
- 28) Wang J, Vuitton DA, Müller N, Hemphill A, Spiliotis M, Blagosklonov O, et al. Deletion of fibrinogen-like protein 2 (FGL-2), a novel CD4+ CD25+ Treg effector molecule, leads to improved control of *Echinococcus multilocularis* infection in mice. PLoS Negl Trop Dis 2015;9:e0003755.
- 29) Huang X, Gruner B, Lechner CJ, Kern P, Soboslay PT. Distinctive cytokine, chemokine, and antibody responses in *Echinococcus* multilocularis-infected patients with cured, stable, or progressive disease. Med Microbiol Immunol 2014;203:185-193.

- 30) Bi J, Zhang Q, Liang D, Xiong L, Wei H, Sun R, et al. T-cell Ig and ITIM domain regulates natural killer cell activation in murine acute viral hepatitis. Hepatology 2014;59:1715-1725.
- 31) Wang J, Jebbawi F, Bellanger AP, Beldi G, Millon L, Gottstein B. Immunotherapy of alveolar echinococcosis via PD-1/PD-L1 immune checkpoint blockade in mice. Parasite Immunol 2018;40:e12596.
- 32) Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 2001;97:3146-3151.
- 33) Clark SE, Schmidt RL, Aguilera ER, Lenz LL. IL-10-producing NK cells exacerbate sublethal *Streptococcus pneumoniae* infection in the lung. Transl Res 2020;226:70-82.
- 34) Neo SY, Yang Y, Record J, Ma R, Chen X, Chen Z, et al. CD73 immune checkpoint defines regulatory NK cells within the tumor microenvironment. J Clin Invest 2020;130:1185-1198.
- 35) Bai L, Vienne M, Tang L, Kerdiles Y, Etiennot M, Escaliere B, et al. Liver type 1 innate lymphoid cells develop locally via an interferon-gamma-dependent loop. Science 2021;371:eaba4177.
- 36) Harjunpaa H, Guillerey C. TIGIT as an emerging immune checkpoint. Clin Exp Immunol 2020;200:108-119.
- 37) Ram DR, Arias CF, Kroll K, Hueber B, Manickam C, Jones RA, et al. Characterization of rhesus macaque liver-resident CD49a(+) NK cells during retrovirus infections. Front Immunol 2020;11:1676.
- 38) Perona-Wright G, Mohrs K, Szaba FM, Kummer LW, Madan R, Karp CL, et al. Systemic but not local infections elicit immunosuppressive IL-10 production by natural killer cells. Cell Host Microbe 2009;6:503-512.
- Ali AK, Komal AK, Almutairi SM, Lee SH. Natural killer cellderived IL-10 prevents liver damage during sustained murine cytomegalovirus infection. Front Immunol 2019;10:2688.
- 40) Dong W, Wu X, Ma S, Wang Y, Nalin AP, Zhu Z, et al. The mechanism of anti-PD-L1 antibody efficacy against PD-L1negative tumors identifies NK cells expressing PD-L1 as a cytolytic effector. Cancer Discov 2019;9:1422-1437.
- Pien GC, Biron CA. Compartmental differences in NK cell responsiveness to IL-12 during lymphocytic choriomeningitis virus infection. J Immunol 2000;164:994-1001.
- 42) Roland J, Soulard V, Sellier C, Drapier AM, Di Santo JP, Cazenave PA, et al. NK cell responses to *Plasmodium* infection and control of intrahepatic parasite development. J Immunol 2006;177:1229-1239.
- 43) Bresson-Hadni S, Petitjean O, Monnot-Jacquard B, Heyd B, Kantelip B, Deschaseaux M, et al. Cellular localisations of interleukin-1 beta, interleukin-6 and tumor necrosis factor-alpha mRNA in a parasitic granulomatous disease of the liver, alveolar echinococcosis. Eur Cytokine Netw 1994;5:461-468.
- 44) Jenne L, Kilwinski J, Radloff P, Flick W, Kern P. Clinical efficacy of and immunologic alterations caused by interferon gamma therapy for alveolar echinococcosis. Clin Infect Dis 1998;26:492-494.

Author names in bold designate shared co-first authorship.

Supporting Information

Additional Supporting Information may be found at onlinelibrary.wiley.com/doi/10.1002/hep.32035/suppinfo.